

MEDICIÓN E INSTRUMENTACIÓN

CARACTERIZACIÓN DINÁMICA DE LOS SISTEMAS DE INSTRUMENTACIÓN

Roberto Giovanni Ramírez-Chavarría

RRamirezC@iingen.unam.mx
Facultad de Ingeniería, UNAM

Semestre 2020-2

Evaluar la rapidez en la respuesta (salida) de un sistema, ante cambios en la entrada.

Observar como evoluciona la salida respecto al tiempo t.

- Dominio del tiempo
- Dominio de la frecuencia

Evaluar la rapidez en la respuesta (salida) de un sistema, ante cambios en la entrada.

Observar como evoluciona la salida respecto al tiempo t.

- Dominio del tiempo
- Dominio de la frecuencia

Transformadas Integrales: Laplace y Fourier. ¿Diferencia?

La rapidez de respuesta depende intrínsecamente de la naturaleza del fenómeno.

Dominio del tiempo

Respuesta transitoria

Señal de entrada o excitación u(t):

Dominio del tiempo

Respuesta transitoria

Señal de entrada o excitación u(t):

- Impulso o delta de Dirac
- Escalón
- Rampa

Señal de salida o respuesta y(t)

Dominio del tiempo

Respuesta transitoria

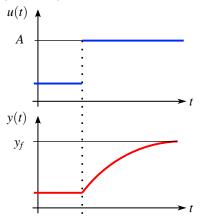
Señal de entrada o excitación u(t):

- Impulso o delta de Dirac
- Escalón
- Rampa

Señal de salida o respuesta y(t)

Dominio del tiempo

Escalón de amplitud A produce una salida final y_f



Un sistema LTI en tiempo se describe por ecuación diferencial!

Dominio del tiempo

Usando la transformada de Laplace

$$U(s) := \mathcal{L}\{u(t)\}\$$

$$Y(s) := \mathcal{L}\{y(t)\}$$

Dominio del tiempo

Usando la transformada de Laplace

$$U(s) := \mathcal{L}\{u(t)\}\$$

$$Y(s) := \mathcal{L}\{y(t)\}\$$

Relación salida/entrada → FUNCIÓN DE TRANSFERENCIA

$$G(s) = \frac{Y(s)}{U(s)}$$

Permite la caracterización en el dominio del tiempo

$$Y(s) = G(s)U(s)$$

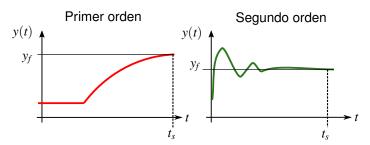
$$y(t) := \mathcal{L}^{-1}\{Y(s)\}$$

Dominio del tiempo

Orden de un sistema

$$G(s) := \frac{Y(s)}{U(s)} = \frac{p_0 + p_1 s + p_2 s^2 + \dots + p_m s^m}{q_0 + q_1 s + q_2 s^2 + \dots + q_n s^n}$$

dado por el grado del polinomio q (denomindador).



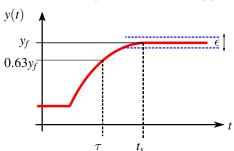
t_s: Tiempo de establecimiento

Dominio del tiempo

Cte. de tiempo $\tau \neq$ tiempo de asentamiento ts

 τ : Tiempo en alcanzar $y(t) = 0.63y_f$

 t_s : Tiempo en alcanzar $y(t) = y_f$

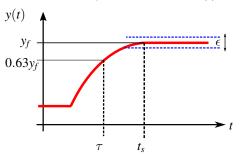


Dominio del tiempo

Cte. de tiempo $\tau \neq$ tiempo de asentamiento ts

 τ : Tiempo en alcanzar $y(t) = 0.63y_f$

 t_s : Tiempo en alcanzar $y(t) = y_f$



Usaremos t_s en instrumentación, pero τ es propio del sistema.

Dominio del tiempo

Para un sistema de primer orden

$$G(s) = \frac{K}{1 + s\tau}$$

K: Ganancia estática (no depende del tiempo)

 τ : Constante de tiempo

Para un sistema de segundo orden

$$G(s) = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

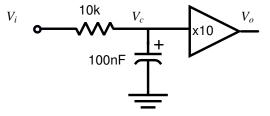
 ζ : Amortiguamiento

 ω_n : Frecuencia natural

Dominio del tiempo

Ejercicio

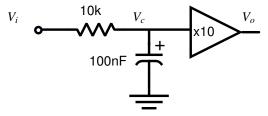
El circuito equivalente de un sensor capacitivo de humedad y su etapa de acondicionamiento tienen la siguiente estructura



¿Cuál es el tiempo de establecimiento sí el error admisible ϵ es del 1% ?

Dominio del tiempo

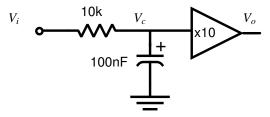
Ejercicio



La dinámica está dada por

Dominio del tiempo

Ejercicio

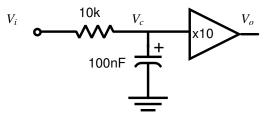


La dinámica está dada por el circuito RC. Entrada $V_i = A$, salida V_c . La func. de transferencia es

$$G(s) = V_c(s)/V_i(s) \rightarrow V_c(s) = G(S)V_i(s)$$
$$V_c(s) = \frac{1}{1+s\tau} \left(\frac{A}{s}\right)$$

Dominio del tiempo

Ejercicio



Usando
$$\mathcal{L}^{-1}\{V_c(s)\}=:V_c(t)$$

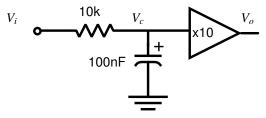
$$\mathcal{L}^{-1}\{\frac{1}{1+s\tau}\left(\frac{A}{s}\right)\}$$

$$V_c(t)=A(1-e^{-\frac{t}{\tau}})\;;\quad \tau=RC$$

$$V_a=10V_c$$

Dominio del tiempo

Ejercicio

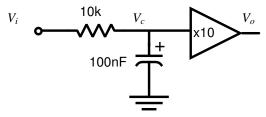


El valor final es $V_c(t) = A$ cuando $V_c(t \to \infty)$

Entonces $V_c=100\%A$, pero sí $\epsilon=1\% \rightarrow V_c=99\%A$

Dominio del tiempo

Ejercicio

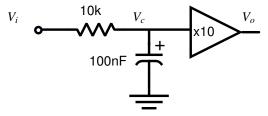


El valor final es
$$V_c(t)=A$$
 cuando $V_c(t\to\infty)$
Entonces $V_c=100\%A$, pero sí $\epsilon=1\%\to V_c=99\%A$
$$0.99A=A(1-e^{-\frac{t}{lk\Omega100nF}})$$

$$t_s=4.6 [\text{ms}]$$

Dominio del tiempo

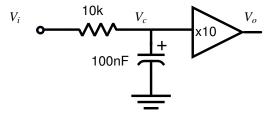
Ejercicio



Repita el ejercicio pero ahora considerando $\epsilon=0.1\%$

Dominio del tiempo

Ejercicio



Repita el ejercicio pero ahora considerando $\epsilon=0.1\%$

$$t_s = 6.9[ms]$$

Dominio de la frecuencia

Respuesta en frecuencia

Señal de entrada o excitación u(t):

Dominio de la frecuencia

Respuesta en frecuencia

Señal de entrada o excitación u(t):

Señal periódica

$$T: \mathsf{periodo} \to f = 1/T: \mathsf{frecuencia}$$

Señal de salida o respuesta y(t)

Dominio de la frecuencia

Respuesta en frecuencia

Señal de entrada o excitación u(t):

Señal periódica

$$T: \mathsf{periodo} \to f = 1/T: \mathsf{frecuencia}$$

Señal de salida o respuesta y(t)

Usamos la transformada de Fourier \mathcal{F}

Dominio de la frecuencia

Respuesta en frecuencia

Usamos la transformada de Fourier \mathcal{F}

$$U(\omega) := \mathcal{F}\{u(t)\}$$

$$Y(\omega) := \mathcal{F}\{y(t)\}$$

 $\omega = 2\pi f$ es la frecuencia angular [rad/s].

La función de transferencia es

$$G(j\omega) = \frac{Y(\omega)}{U(\omega)}$$

Dominio de la frecuencia

Respuesta en frecuencia

La respuesta en frecuencia del sistema ante una entrada a frecuencia ω

$$Y(\omega) = G(j\omega)U(\omega)$$

En la práctica usamos $u(t) = A \sin(\omega t + \phi)$

¿Porqué no usamos una señal cuadrada?

Dominio de la frecuencia

Respuesta en frecuencia

La respuesta en frecuencia del sistema ante una entrada a frecuencia ω

$$Y(\omega) = G(j\omega)U(\omega)$$

En la práctica usamos $u(t) = A \sin(\omega t + \phi)$

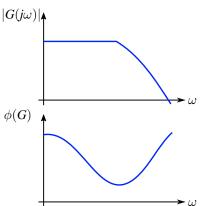
¿Porqué no usamos una señal cuadrada?

Contiene armónicos $\omega_1, \omega_3, \omega_5, \dots$

Dominio de la frecuencia

Respuesta en frecuencia

La representación gráfica de la RF son los diagramas de bode

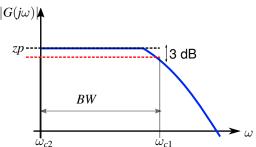


Dominio de la frecuencia

Respuesta en frecuencia

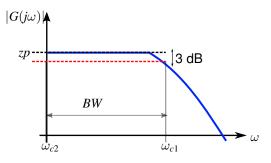
El ancho de banda (*bandwidth*) *BW* es el intervalo de frecuencias en donde el sistema opera "**correcatemente**".

En control, electrónica y otras área se refiere a 3 dB (decibeles) de la zona plana (zp).



Dominio de la frecuencia

Respuesta en frecuencia



 ω_{c1}, ω_{c2} : frecuencias de corte

$$BW = \omega_{c2} - \omega_{c1}$$
$$= f_{c2} - f_{c1}$$

Dominio de la frecuencia

Respuesta en frecuencia

¿Qué representan los 3dB de la zona plana?

$$3\mathsf{dB} = 20\log\left(\frac{G_{zp}}{G}\right)$$

$$G = \frac{1}{10^{(3/20)}}G_{zp} = 0.7079G_{zp}$$

Dominio de la frecuencia

Respuesta en frecuencia

¿Qué representan los 3dB de la zona plana?

$$3\mathsf{dB} = 20\log\left(\frac{G_{zp}}{G}\right)$$
$$G = \frac{1}{10^{(3/20)}}G_{zp} = 0.7079G_{zp}$$

La ganancia G "puede" desviarse la ganancia en la zona plana G_{zp} hasta 0.7079, i.e $1-0.7079\approx0.3=30\%$

Dominio de la frecuencia

Respuesta en frecuencia

¿Qué representan los 3dB de la zona plana?

$$3\mathsf{dB} = 20\log\left(\frac{G_{zp}}{G}\right)$$
$$G = \frac{1}{10^{(3/20)}}G_{zp} = 0.7079G_{zp}$$

La ganancia G "puede" desviarse la ganancia en la zona plana G_{zp} hasta 0.7079, i.e $1-0.7079\approx0.3=30\%$

En instrumentación implicaría un error "aceptable" de casi 30%.

No sería un instrumento confiable

Dominio de la frecuencia

Respuesta en frecuencia

Necesitamos definir el BW tal que el error < 30 %

Ejercicio

Un sistema de instrumentación tiene una respuesta caracterizada por una función de transferencia con un polo a 10 kHz y una ganancia de 10 en la zona plana. ¿Cuál es el *BW* a 0.1 dB?

Un polo - sistema de 1er orden

$$G(j\omega) = \frac{10}{1 + j\omega\tau}$$

Dominio de la frecuencia

Respuesta en frecuencia

Ejercicio

$$G(j\omega) = \frac{10}{1 + j\omega\tau}$$

El polo
$$f_p=10 {
m [kHz]} pprox \omega_p$$
 62800 [rad/s] y $au=1/\omega_p$

Dominio de la frecuencia

Respuesta en frecuencia

Ejercicio

$$G(j\omega) = \frac{10}{1 + j\omega\tau}$$

El polo $f_p=10 [{
m kHz}] pprox \omega_p$ 62800 [rad/s] y $au=1/\omega_p$

$$G(j\omega) = \frac{10}{1 + \frac{j\omega}{62800}}$$

Dominio de la frecuencia

Respuesta en frecuencia

Ejercicio

$$G(j\omega) = \frac{10}{1 + j\omega\tau}$$

El polo $f_p=10$ [kHz] $pprox \omega_p$ 62800 [rad/s] y $au=1/\omega_p$

$$G(j\omega) = \frac{10}{1 + \frac{j\omega}{62800}}$$

La ganancia permitida es -0.1 dB, entonces

$$-0.1\mathsf{dB} = 20\log\left(G_{min}/10\right)$$

$$G_{min} = 9.886$$

Dominio de la frecuencia

Respuesta en frecuencia

Ejercicio

El módulo de la ganancia de la FT es

$$|G(j\omega)| = \frac{10}{\sqrt{1^2 + \left(\frac{\omega_c}{62800}\right)^2}}$$

Despejando ω_c (frecuencia de corte)

$$\omega_c pprox 9560 \, ext{[rad/s]}
ightarrow f_c pprox 1.52 \, ext{kHz}$$

Al ser un sistema de 1er orden

$$BW = f_c - 0$$
Hz = 1.52kHz

Dominio de la frecuencia

Respuesta en frecuencia

Ejercicio

El módulo de la ganancia de la FT es

$$9.886 = \frac{10}{\sqrt{1^2 + \left(\frac{\omega_c}{62800}\right)^2}}$$

Despejando ω_c (frecuencia de corte)

$$\omega_c pprox 9560 \, ext{[rad/s]}
ightarrow f_c pprox 1.52 \, ext{kHz}$$

Al ser un sistema de 1er orden

$$BW = f_c - 0$$
Hz = 1.52kHz

Dominio de la frecuencia

Respuesta en frecuencia

Ejercicio (cont.)

El mismo sistema de instrumentación procesa señales cuya fase varía de 0 a 45 $^{\circ}$, ¿cuál es el BW con un error menor del 1%?

El error permitido en grados es 0.45°

Recordando nuestra FT

$$G(j\omega) = \frac{10}{1 + \frac{j\omega}{62800}}$$

La fase de la FT es

$$\phi = \text{ang tan}\left(\frac{\omega}{62800}\right)$$

Dominio de la frecuencia

Respuesta en frecuencia

Igualando con el error permitido

$$0.45^{\circ} = \text{ang tan}\left(\frac{\omega}{62800}\right)$$

Despejando $\omega := \omega_c$

$$\omega_c \approx 493$$
 rad/s

EIBW

$$BW = \frac{\omega_c}{2\pi} - 0 \approx 78.5$$
 Hz

Ejercicio

La unión caliente de un termopar es repentinamente introducida en un horno a temperatura constante de 200°C ; la unión fría del termopar es mantenida a 0°C. La sensibilidad del termopar es de $40\mu V/^{\circ}$ C. Se sabe que la respuesta al escalón del sensor se asemeja a un sistema de primer orden. Sí la constante de tiempo es 2 s, determine el error dinámico en 3 s. En qué tiempo dicho error se reduciría al 1% del valor final?

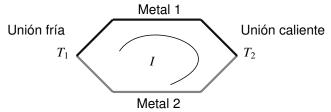
Ejercicio

Primero ... ¿Qué es un termopar?

Ejercicio

Primero ... ¿Qué es un termopar?

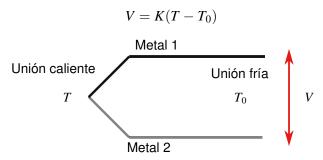
Es un sensor de temperatura basado en fenómenos termoeléctricos (efectos Seebeck, Peltier y Thompson).



Metales diferentes y $T_1 \neq T_2$, fluye una corriente I

Ejercicio

Un termopar produce un voltaje proporcional a la diferencia de temperaturas



Unión caliente : punto de medición Unión fría: punto de referencia

Ejercicio

Ahora sí

Podemos conocer el valor de la salida del termopar ante una entrada de 200°, usando la sensibilidad

$$S = 40 \frac{\mu V}{^{\circ} C} = 8 \text{mV} = K$$

La respuesta en el tiempo

Ejercicio

Ahora sí

Podemos conocer el valor de la salida del termopar ante una entrada de 200° , usando la sensibilidad

$$S = 40 \frac{\mu V}{^{\circ} C} = 8 \text{mV} = K$$

La respuesta en el tiempo (sistema de primer orden)

$$y(t) = K \left(1 - e^{-t/\tau} \right)$$

El valor final es $y(t \to \infty) = K$, entonces el error dinámico

$$\epsilon(t) = K - K \left(1 - e^{-t/\tau}\right) = Ke^{-t/\tau}$$

Ejercicio

$$\epsilon(t) = Ke^{-t/\tau}$$

a) Para t=3 segundos y $\tau=2$

Ejercicio

$$\epsilon(t) = Ke^{-t/\tau}$$

a) Para t=3 segundos y $\tau=2$

$$\epsilon(t=3) = (8mV) \cdot e^{-3/2} = 1.78mV$$

Ejercicio

$$\epsilon(t) = Ke^{-t/\tau}$$

a) Para t=3 segundos y $\tau=2$

$$\epsilon(t=3) = (8\text{mV}) \cdot e^{-3/2} = 1.78\text{mV}$$

b) El tiempo para que el error sea de 1% (i.e. 0.08 mV)

Ejercicio

$$\epsilon(t) = Ke^{-t/\tau}$$

a) Para t=3 segundos y $\tau=2$

$$\epsilon(t=3) = (8mV) \cdot e^{-3/2} = 1.78mV$$

b) El tiempo para que el error sea de 1% (i.e. 0.08 mV)

$$0.08 = (8\mathsf{mV}) \cdot e^{-t/2}$$

Ejercicio

$$\epsilon(t) = Ke^{-t/\tau}$$

a) Para t=3 segundos y $\tau=2$

$$\epsilon(t=3) = (8\text{mV}) \cdot e^{-3/2} = 1.78\text{mV}$$

b) El tiempo para que el error sea de 1% (i.e. 0.08 mV)

$$0.08 = (8\mathsf{mV}) \cdot e^{-t/2}$$

Despejando a t

$$t = 9.21s$$

Ejercicio

Para el mismo termopar, suponga que la temperatura que está midiendo está oscilando de forma sinusoidal con un periodo de 2s y amplitud de $+200^{\circ}$ a -200° . Obtenga el ancho de banda de operación a 1 dB para la magnitud y el ancho de banda para un error del 1 grado en el ángulo de la fase.

Gracias!

Contact: https://rgunam.github.io

RRamirezC@iingen.unam.mx